РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ НКИП.408911.100РЭ

БЕТОН-ФРОСТ

В БЕТОН-ФРОСТ @

-0.-

ALT

 (\mathbf{C})

Δ

(⇒)

БЕТОН ФРОСТ ИЗМЕРИТЕЛЬ ОБЪЕМНЫХ

ДЕФОРМАЦИЙ БЕТОНА

())

научно-производственное предприятие ИНТЕРПЕНЕР ИНТЕРПЕНЕР

СОДЕРЖАНИЕ

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	3
2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СОСТ	ГАВ4
З УСТРОЙСТВО И РАБОТА	5
4 МЕРЫ БЕЗОПАСНОСТИ	21
5 ПОРЯДОК РАБОТЫ	22
6 МЕТОДИКА ПОВЕРКИ	
7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И ЭКСПЛУАТАЦИЯ	35
8 МАРКИРОВКА И ПЛОМБИРОВАНИЕ	
9 ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ	
10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	
11 УТИЛИЗАЦИЯ	
12 НОРМАТИВНЫЕ ССЫЛКИ	
13 КОМПЛЕКТНОСТЬ	
ПРИЛОЖЕНИЕ А Программа связи комплекса БЕТОН компьютером	I-ФРОСТ с 40
•	

Руководство по эксплуатации предназначено для лиц, эксплуатирующих измеритель объемных деформаций бетона БЕТОН-ФРОСТ (далее - комплекс) и содержит сведения о принципе действия, конструкции, технические характеристики, описание методов контроля морозостойкости тяжелых и легких бетонов, дорожных и аэродромных покрытий, а также другие сведения, необходимые для нормальной эксплуатации комплекса.

Эксплуатация комплекса допускается только после изучения настоящего руководства.

ВНИМАНИЮ ПОЛЬЗОВАТЕЛЕЙ!

Прибор предназначен для профессионального применения. Перед началом работы с прибором внимательно изучите требования нормативных документов на используемый метод определения морозостойкости бетона. С перечнем нормативных документов можно ознакомиться в разделе 12 настоящего РЭ.

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Комплекс предназначен для измерения объемных деформаций, насыщенных водой бетонных образцов при определении морозостойкости бетонов дилатометрическим методом в соответствии с ГОСТ 10060.3 (с изменением №1).

Применяется для оперативного контроля морозостойкости при технологических процессах изготовления бетона и в строительстве для бетонных и железобетонных конструкций, подверженных воздействию знакопеременных температур.

1.2 Рабочие условия эксплуатации: температура окружающего воздуха: электронного блока - от плюс 10 до плюс 35 °C; измерительной камеры - от минус 20 до плюс 35 °C; относительная влажность воздуха при плюс 35 °C и ниже без конденсации влаги до 75 %, атмосферное давление 84...106,7 кПа.

1.3 Комплекс соответствует обыкновенному исполнению изделий третьего порядка по ГОСТ Р 52931.

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СОСТАВ

2.1 Основные технические характеристики

D	
Внутренние размеры измерительнои ка-	105×105×105
	105/105/105
	100~100~100
- KYOVIK	100×100×100
	/U×/U×/U ~70_70
– керн	Ø/0×/0
Диапазон измерения объемных деформа-	
ций, мл (см ³)	от 0,1 до 7,0
Пределы допускаемой основной абсолют-	
ной погрешности измерения объемных де-	
формаций, см ³	± 0,1
Пределы допускаемой дополнительной по-	
грешности измерения объемных деформа-	
ций при отклонении температуры от гра-	
ниц нормальной области в пределах рабо-	
чего диапазона температур на каждые	
10 °С изменения температуры, см ³	± 0,05
Питание комплекса: от встроенного литие-	
вого источника с напряжением, В	3,7 ± 0,5
Потребляемая мощность, Вт, не более	0,2
Связь с персональным компьютером	USB-интерфейс
Масса комплекса, кг, не более	14,0
Габаритные размеры	
(длина × ширина × высота), мм, не более	
– электронного блока	151×81×32
 измерительной камеры 	160×170×210
Средняя наработка на отказ, ч, не менее	8000
Средний срок службы, лет, не менее	10

2.2 Состав комплекса

- 2.2.1 Электронный блок.
- 2.2.2 Соединительный блок.
- 2.2.3 Измерительные камеры до 3-х штук.

З УСТРОЙСТВО И РАБОТА

3.1 Принцип работы

В основу работы комплекса положен метод преобразования температурных объемных деформаций водонасыщенного бетонного образца посредством рабочей жидкости – керосина в герметичной измерительной камере с сильфоном, жестко связанным с датчиком перемещений, преобразующим линейные перемещения сильфона в электрический сигнал (далее - напряжение преобразования). Изменение объема и изменение напряжения преобразования на датчике линейных перемещений связаны между собой градуировочным коэффициентом k_{гр} (см. формулу 1), который определяется при выпуске комплекса из производства (п.5.5 ТУ4215-011-7453096769-06), хранится в памяти измерительной камеры и не меняется в процессе эксплуатации, так как является стабильной характеристикой геометрических размеров сильфона:

$$V = K_{\rm rp} \cdot U_{\rm np} \,, \tag{1}$$

где V – определяемый объем, см³;

k_{гр} – градуировочный коэффициент, см³/В;

U_{пр} – напряжение преобразования, измеренное электронным блоком, В.

Комплекс позволяет проводить испытания на бетонных кубиках с ребром 100 мм, а дополнительные конструктивные элементы измерительных камер дают возможность применять в качестве бетонных образцов цилиндры (керны) с диаметром и высотой 70 мм и кубики с ребром 70 мм.

Во время замораживания измерительной камеры в морозильной камере электронный блок непрерывно фиксирует кривую объемных деформаций водонасыщенного бетонного образца V₆ (рис.1). Эта кривая в области отрицательных температур имеет зону аномальных скачкообразных изменений объема, обусловленных переходом воды в лед.

Для определения величины этих деформаций начальный участок кривой V₆ в области положительных температур комплекс автоматически совмещает со стандартной кривой объемных деформаций V_c, которая хранится в памяти электронного блока в виде адаптивной математической модели, характеризующей изменение объема измерительной камеры со стандартным образцом при их охлаждении. В качестве стандартного образца используется алюминиевый куб размерами 100×100×100 мм.

В результате совмещения этих кривых и вычитания их друг из друга, в соответствии с формулой:

$$V = K_{\rm np} \cdot V_{\rm c} - V_{\rm f} \,, \tag{2}$$

где k_{пр} – коэффициент преобразования; получается кривая V, характеризующая объемные деформации воды, содержащейся в бетонном образце при переходе её в лед.

Время t, мин

Рисунок 1 – Примерный вид и способ обработки кривых объемных деформаций

По этой кривой комплекс определяет величину аномального скачкообразного изменения разности объемных деформаций ΔV , обусловленного образованием льда.

Значение максимального относительного увеличения разности объемных деформаций бетонного и стандартного образцов θ , корреляционно связанное с маркой бетона по морозостойкости F, вычисляется по формуле:

$$\theta = \frac{\Delta V}{V_0},\tag{3}$$

где ∆V – значение максимальной разности объемных деформаций бетонного и стандартного образцов при замерзании воды в бетоне, см³; V₀ – начальный объем бетонного образца, см³.

Согласно ГОСТ 10060.3 (с изменением №1) и таблицам 1 и 2, на основании вычисленного значения θ электронный блок по окончании испытания индицирует на экране марку исследуемого бетона по морозостойкости F, выраженную в циклах переменного замораживания и оттаивания в воде, с учетом вида бетона, формы и размера образцов.

Форма и размер образца, мм		Куб с ребром 100		Цилиндр с диаметром и высотой 70	
Вид бетона		Тяже- лый	Легкий	Тяже- лый	Легкий
	F25	>3,80	>4,75	>6,00	>7,00
	F35	3,80- 3,60	4,75- 4,50	6,00- 5,00	7,00- 6,00
	F50	3,60- 3,50	4,50- 4,00	5,00- 3,80	6,00- 5,00
	F75	3,50- 2,40	4,00- 3,30	3,80- 3,25	5,00- 3,80
относительное	F100	2,40- 1,70	3,30- 2,30	3,25- 1,90	3,80- 3,40
ности объемной	F150	1,70- 1,00	2,30- 2,00	1,90- 1,30	3,40- 2,80
деформации θ×10 ⁻³ бетон-	F200	1,0-0,65	<2,00	1,30- 0,75	<2,80
дартного образ-	F300	0,65- 0,33	-	0,75- 0,40	
бетона по моро-	F400	0,33- 0,20	-	0,40- 0,25	
зостоикости	F500	0,20- 0,18	-	0,25- 0,18	
	F600	0,18- 0,08	-	0,18- 0,09	
	F800	0,08- 0,05	-	<0,09	
	F1000	<0,05	-	-	

Таблица 1

Таблица 2

Форма и размер образца, мм		Куб с ребром 100
Вид бетона		Бетоны дорожных и аэродромных покрытий
Максимальное относи-	F150	0,5-0,25
тельное увеличение раз-	F200	0,25-0,18
ности объемной дефор- мации θ×10 ⁻³ бетонного и	F300	0,18-0,08
стандартного образцов для марки бетона по мо- розостойкости (второй базовый метод)	F400	0,08-0,05

Адаптивная математическая модель, используемая в комплексе, позволяет реализовать дифференциальный метод измерения объемных деформаций без физического использования измерительной камеры со стандартным образцом, что повышает точность и производительность проведения экспериментов. Поставляемый в комплекте стандартный образец дает возможность самостоятельно получать математическую модель под конкретное холодильное оборудование и условия испытаний.

Алгоритм работы комплекса позволяет сохранять несколько математических моделей, которые дают возможность учесть влияние на процесс охлаждения дополнительных камер и начальной температуры.

При работе с двумя или тремя измерительными камерами комплекс позволяет проводить прямые испытания на морозостойкость, описанные в ГОСТ 10060.3 (с изменением №1), одновременно замораживая бетонные и стандартный образцы.

3.2 Устройство комплекса

Комплекс (рис.2) состоит из электронного блока **1**, соединительного блока **2** и, в зависимости от заказа, одной, двух или трех измерительных камер **3**. Электронный блок имеет на лицевой панели 12-ти кнопочную клавиатуру **4** и графический дисплей **5**. В верхней торцевой части корпуса установлен восьмиконтактный разъём **6** для подключения соединительного блока, а рядом расположен USB-разъем **7** для связи с компьютером и передачи данных для более детальной обработки информации в специальной программе. Также этот разъем используется для подключения внешнего блока питания при осуществлении цикла заряда батареи. В корпусе электронного блока находится встроенный литиевый источник питания (извлечение и замена литиевой батареи потребителем не допускается).

Каждая измерительная камера **3** подключается к соединительному блоку **2** при помощи кабеля.

Рисунок 2 – Общий вид комплекса с тремя камерами

Измерительная камера (рис. 3) выполнена в виде квадратного контейнера 1, в который помещается исследуемый образец. На передней стенке контейнера через кронштейн вертикально закреплен сильфон, который с помощью жесткого поводка соединен с датчиком линейных перемещений.

Рисунок 3 – Внешний вид измерительной камеры

В стенке контейнера рядом с датчиком перемещений установлен цифровой датчик температуры. Камера герметично закрывается крышкой **2** через резиновое кольцо, уложенное в паз, и прижимается осевым усилием, при помощи прижимного устройства, состоящего из прижимного болта **3** и коромысла **4**, вставленного в проушины боковых кронштейнов **5**. На крышке расположено контрольное отверстие для стравливания воздуха, закрываемое пробкой **6**. Доливка керосина производится через заправочный патрубок **7**, закрываемый пробкой **8**. Измерительная камера размещена на стойке **9** и имеет возможность покачиваться вокруг своей оси в вертикальной плоскости. Угловое перемещение можно ограничить упорным винтом **10**. Во избежание случайного повреждения сильфона и датчиков линейного перемещения и температуры, измерительный блок камеры закрыт металлическим кожухом **11**.

В нижней части измерительного блока расположен фиксатор-флажок **12**, в верхней части – разъем **13** для подключения к электронному блоку при помощи соединительного кабеля. На внутренней стороне крышки выполнена клиновидная полость, которая способствует более полному удалению воздуха при заливке керосина в камеру.

При поверке комплекса кронштейн с винтом M6x0,5 устанавливается на нижней стенке измерительной камеры соосно направляющей шпильке и закрепляется винтами.

3.3 Клавиатура

Состоит из 12 кнопок.

000	
	Используется для включения и выключения исполь- зуется для включения и выключения комплекса.
M	Служит для перевода комплекса в режим измерения и входа в просмотр архива.
F	Является функциональной и предназначена для: - входа в главное меню из режима измерения; - входа и выхода из пунктов главного меню и под- меню.
	Служит для включения и выключения подсветки дисплея. При включении комплекса подсветка все-гда отключена.
	Предназначены для выбора строки меню, для уста- новки значений параметров и выбора интересую- щего канала измерений.
•	Предназначены для управления курсором (мигаю- щий знак, цифра и т.п.) в режиме установки рабо- чих параметров, а также для управления просмот- ром памяти результатов.
С	Служит для быстрого выхода из подменю в главное меню комплекса, удаления ненужных результатов и для смены графической информации в режиме из-мерения и просмотра архива.

Остальные кнопки не используются.

3.4 Режимы работы

Комплекс предусматривает только ручной запуск измерений, который происходит при нажатии кнопки M.

В зависимости от количества измерительных камер, используемых при испытаниях, программа электронного блока может поддерживать следующие режимы:

а) при наличии одной камеры:

- построение математической модели – замораживание камеры со стандартным образцом и запись процесса в память комплекса в виде модели;

- определение морозостойкости – регистрация процесса замораживания камеры с бетонным образцом с использованием математической модели для обработки результатов;

б) при наличии двух или трех камер:

- определение морозостойкости прямым способом – одновременное замораживание бетонных и стандартного образцов;

- определение морозостойкости двух бетонных образцов – обработка результатов производится при помощи математической модели.

3.5 Система меню

3.5.1 Главное меню

При включении питания комплекса появляется кратковременное сообщение, затем программа автоматически переходит в *главное меню.* Требуемая строка выбирается кнопками (1), (1) и выделяется темным фоном.

Для перехода к работе с требуемым пунктом меню необходимо выбрать его и нажать кнопку **F**. Для возврата в главное меню повторно нажать **F**.

В нижней строке экрана, в зависимости от вида меню, высвечивается индикатор заряда батареи аккумуляторов, текущее время и дата, логотип USB-разъема при подключении комплекса к компьютеру. Кроме того, в некоторых подменю нижние строки индикатора могут содержать подсказки по активным функциональным кнопкам.

3.5.2 Пункт главного меню «Параметры»

Пункт служит для установки параметров испытания.

Параметры: Станд.образец Актив.каналы Длительн.уч:м Периодус Объем выборки	4 4:30 3240
[+→↑↓]изменить/	KYPCOP

Переход на нужную строку осуществляется кнопками 🛈 и 🕩, а изменение значений кнопками 🗢 и 🗢.

Параметр «Стандартный образец» указывает номер канала, к которому подключена измерительная камера со стандартным образцом, или метку выбранной математической модели, и может принимать следующие значения:

1 – стандартный образец находится в камере, подключенной к каналу №1;

2 – стандартный образец находится в камере, подключенной к каналу №2;

3 – стандартный образец находится в камере, подключенной к каналу №3;

М1 – стандартная кривая описывается математической моделью с меткой М1;

M2 – стандартная кривая описывается математической моделью с меткой M2;

M3 – стандартная кривая описывается математической моделью с меткой M3.

Параметр «Активные каналы» соответствует номеру и количеству, подключенных к электронному блоку измерительных камер, и может принимать значения:

1 – информация регистрируется по каналу №1, подключена одна камера;

2 – информация регистрируется по каналу №2, подключена одна камера;

3 – информация регистрируется по каналу №3, подключена одна камера;

1+2 – информация регистрируется по каналам №1 и №2, подключено две камеры;

2+3 – информация регистрируется по каналам №2 и №3, подключено две камеры;

1+3 – информация регистрируется по каналам №1 и №3, подключено две камеры;

все – информация регистрируется по каналам №1, №2 и №3, подключено три камеры.

Параметр **«Длительность»** позволяет задать время процесса измерения, в течение которого электронный блок будет опрашивать датчики линейных перемещений и температуры. Значение этого параметра изменяется кратно 15 минутам от 1 до 8 часов.

Параметр «**Период**» позволяет установить временной интервал между опросами датчиков каждой измерительной камеры. Значение этого параметра изменяется кратно 5 секундам от 5 до 20 секунд.

Параметр **«Объем выборки**» пересчитывается автоматически при изменении длительности и периода измерений, и показывает количество точек отсчетов по каждому датчику. Максимальное число отсчетов – 4320.

Если значения параметров «**Длительность**» и «**Период**» выбраны таким образом, что «**Объем выборки**» получился больше 4320, то при выходе из меню «**Параметры**» программа автоматически увеличит период до оптимального значения.

Более подробную информацию о возможных и рекомендуемых настройках параметров испытания смотрите в п.п. 5.4-5.5. («Создание математической модели» и «Проведение испытаний») данного руководства по эксплуатации.

3.5.3 Пункт главного меню «Бетонный образец»

Пункт позволяет выбрать вид бетона (бетон тяжелый, бетон легкий, бетон дорожных и аэродромных покрытий) и размер образца (кубик с ребром 100 мм и 70 мм, цилиндр с диаметром и высотой 70 мм), используемый в эксперименте.

3.5.4 Пункт главного меню «Математическая модель»

Пункт предназначен для установки и просмотра коэффициентов математической модели (зависимость изменения объема

от времени), которая в комплексе представлена в виде степенной функции третьего порядка:

$$V(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + a_3 \cdot t^3$$

$$V(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + a_3 \cdot t^3$$

$$(4)$$

$$W(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + a_1 t + a_0 + a_1 t + a_0 + a_1 \cdot t^2 + a_1 t + a_0 + a_1 \cdot t^2 + a_1 t + a_0 + a_1 \cdot t^2 + a_1 t + a_0 + a_1 \cdot t^2 + a_1 t + a_0 + a_1 \cdot t^2 + a_1 t + a_0 + a_1 \cdot t^2 + a_0 + a$$

М1: а0**=**7.818Е-01 а1=+1.281Е-03 а2=-8.058Е-08 а3=+1.911Е-12 [С]выбор модели [↑↓↔]изменить/курсор

Значения этих коэффициентов записываются в форме a_i = K·Eⁿ, где, E = 10, n – показатель степени.

Для выбора нужной позиции (знак, разряд числа), которая отмечается мигающим указателем, используются кнопками и . Установка значений чисел производится клавишами и .

В программу электронного блока, при обработке результатов испытания, заложен алгоритм автоматического вычисления коэффициентов аппроксимации реального процесса, которые можно сохранить в памяти комплекса, под одной из индицируемых меток М1, М2 или М3.

Более подробную информацию о применении математических моделей смотрите в п.п. 5.4-5.5 руководства по эксплуатации.

3.5.5 Пункт главного меню «Архив»

Пункт предоставляет доступ к подменю просмотра результатов измерений и ресурса памяти.

Архивная информация в подменю *«Просмотр»* хранится в виде списка, который отсортирован по времени проведения.

В первой строке находится последнее измерение. Каждая строка содержит первичные данные – дату, время начала регистрации и длительность. При необходимости ненужный результат можно удалить кнопкой **С**. Навигация в режиме просмотра

(кнопка (М)) конкретного процесса такая же, как и в режиме измерения (см. п.п. 3.6-3.7).

В подменю «Ресурс памяти» находятся данные о количестве свободной памяти. Рекомендуется всю информацию о проведенных испытаниях сохранять на компьютере при помощи программы связи, так как при переполнении памяти новая информация будет записываться поверх предыдущей и самые первые измерения, которые стоят в конце списка архива станут недоступными. Нажатием кнопки С в этом подменю можно принудительно очистить всю память комплекса.

3.5.6 Пункт главного меню «Дополнительно»

Пункт позволяет через соответствующие подпункты:

просмотреть информацию о напряжении источника питания;
 (при разряде сверх допустимого уровня работа комплекса блокируется и появляется сообщение – «Зарядить АКБ»);

- устанавливать или корректировать дату и время;

– задавать интервал времени (от 5 до 30 мин.), по истечении которого комплекс самостоятельно отключится, при условии, что не активен режим измерения;

 выбирать русский или английский язык текстовых сообщений;

– проводить калибровку комплекса на предприятии – изготовителе;

– просмотреть краткие сведения о данной разработке и предприятии-изготовителе.

3.5.7 Пункт главного меню «Градуировочные коэффициенты»

Пункт позволяет при подключенных к электронному блоку измерительных камерах посмотреть текущие значения объема и температуры корпуса камеры, значение градуировочного коэффициента, серийный номер измерительной камеры и дату калибровки. Значение градуировочного коэффициента, серийный номер и дата калибровки хранится во внутренней памяти измерительной камеры.

Верхняя строка экрана указывает номер измерительного канала, к которому подключена камера. Этот номер будет соответствовать маркировке на разъеме (в данном примере К1) штатного соединительного кабеля, подключенного к ней.

Нажатием кнопки (с) экран электронного блока можно переключить на следующий канал измерения.

Если к нему не будет подключена ни одна из камер, то на экране во всех строчках будут отображены вопросительные знаки.

3.6 Режим измерений

Комплекс переводится в режим измерения нажатием кнопки из всех состояний, кроме случая, когда активно меню просмотра результатов.

Первым нажатием электронный блок переводится в *режим* предварительного измерения с отображением для каждого ак-

тивного канала (измерительной камеры) текущего значения температуры корпуса измерительной камеры и положения датчика перемещения, пересчитанное в единицы объема.

Если неправильно установлены значения параметров испытания (см. п. 3.5.2) или камеры не подключены к электронному блоку, то программа выдаст сообщение об ошибке в соответствующем канале: «ошибка подключения!». При необходимости нажатием кнопки С можно принудительно обнулить показания датчика перемещений. Из режима предварительного измерения в главное меню выходят по кнопке F.

Режим регистрации запускается нажатием кнопки (М). Во время регистрации процесса заморозки информация с датчиков измерительных камер индицируется в текстовом и графическом виде.

В текстовом режиме отображается текущее значение температуры и объема во всех активных каналах, линейка прогресса, номер измерения, дата и время. Переключение между текстовым и графическим режимами индикации осуществляется кнопкой M.

В графическом режиме можно просмотреть процесс изменения сигнала для каждого датчика в отдельности. Переключение между графиками изменения температуры и объема одного измерительного канала осуществляется кнопкой **С**.

Положением вертикального курсора можно управлять кнопками → и →. Движение курсора вдоль оси времени ускоряется при удержании данных кнопок в нажатом состоянии.

Слева по центру экрана располагается информация о том, процесс какого датчика выведен на индикатор (V - объем,

T - температура), а индекс типа указывает на номер канала. Число, стоящее под обозначением типа активного канала, соответствует текущему положению курсора.

Если к электронному блоку подключено две и более измерительных камер, то последовательным нажатием кнопки можно переключаться между графиками V1↔V2 и T1↔T2.

Согласно ГОСТ 10060.3 (с изменением №1) испытание на морозостойкость бетона считается завершенным при достижении минус 16 °С. В режиме регистрации измерений температура в каждой камере отслеживается индивидуально. Если нет охлаждения одной из камер до минус 16 °С, то продолжительность регистрации автоматически увеличивается (с шагом 15 минут).

Во время регистрации можно увеличить продолжительность процесса измерения, с шагом 15 минут, через соответствующий пункт меню (см. далее).

В текстовом режиме нажатием кнопки \frown можно посмотреть сводную информацию о выбранных параметрах- вид бетона, геометрия образца, стандартный образец (эталон), количество активных каналов, длительность и период.

Процесс регистрации завершается автоматически. На индикацию выводятся результаты, которые при нажатии кнопки (F) сохраняются в памяти.

Для бетонного образца индицируются:

- максимальная разность объемных деформаций бетонного и стандартного образцов ΔV;

- максимальная относительная разность объемных деформаций θ ;

- марка бетона по морозостойкости F;

Для стандартного образца индицируются коэффициенты математической модели, которые нажатием кнопки (1) можно записать в пункт главного меню «Математическая модель» под нужной меткой М1, М2 или М3.

Процесс регистрации можно остановить самостоятельно. При этом программой будет предложено несколько вариантов действий:

+15 минут – увеличение длительности измерения и возврат в режим регистрации;

- продолжить – возврат в режим регистрации;

- удалить – удаление собранной информации и возврат в режим предварительного измерения;

- сохранить – обработка собранной информации и сохранение в архиве.

3.7 Память результатов

3.7.1 Комплекс оснащен памятью для долговременного хранения 126 результатов испытаний и условий их выполнения, которые заносятся в память подряд, начиная с 1 номера.

3.7.2 Результат испытаний может содержать от 2 до 6 кривых изменения объема и температуры, в зависимости от количества используемых измерительных камер. При испытаниях двух и более бетонных образцов значение морозостойкости F выводится как для отдельного образца, так и для всей серии по средней величине максимальной относительной разности объемных деформаций θ, в соответствии с ГОСТ 10060.3 (с изменением №1).

3.7.3 Результаты можно просматривать на дисплее электронного блока комплекса. Вход в режим просмотра осуществляется из соответствующего пункта главного меню «Архив» (см. п. 3.5.5). Навигация осуществляется так же, как и в режиме измерения.

3.7.4 При переполнении памяти автоматически удаляется самый старый результат с заменой его на новый.

Можно удалить все результаты, используя меню «Ресурс памяти».

3.7.5 Выход из просмотра результатов производится нажатием кнопки (F).

3.7.6 Любой результат можно удалить нажатием кнопки \bigcirc .

4 МЕРЫ БЕЗОПАСНОСТИ

4.1 По способу защиты человека от поражения электрическим током комплекс соответствует классу III ГОСТ 12.2.007.0 и не требует заземления. 4.2 При работе комплекса с морозильной камерой необходимо соблюдать меры безопасности, изложенные в руководстве по её эксплуатации.

4.3 При заполнении измерительной камеры керосином должны соблюдаться требования безопасности в соответствии с действующими правилами пожарной безопасности и промышленной санитарии.

4.4 К работе с комплексом должны допускаться лица, изучившие настоящее РЭ.

4.5 Комплекс не содержит компонентов, опасных для жизни и здоровья людей.

5 ПОРЯДОК РАБОТЫ

5.1 Включение комплекса

При первичном вводе комплекса в эксплуатацию, необходимо осуществить полный цикл заряда батареи (п. 7.5).

Комплекс также может работать от кабеля связи USB, если он подключен к компьютеру.

Включение комплекса производится нажатием кнопки (), при этом на дисплее кратковременно появится информационное сообщение, затем дисплей автоматически переходит в главное меню. Если при включении комплекса дисплей сообщает о необходимости заряда аккумулятора или не работает, то в соответствие с пунктом 7.5 следует произвести цикл заряда батареи.

При первом включении комплекса и в дальнейшем необходимо произвести установку или коррекцию времени и даты.

5.2 Подготовка образцов и измерительной камеры

5.2.1 Перед началом испытаний необходимо подготовить бетонные образцы, которые изготавливают и отбирают согласно пунктам 4.5 - 4.10 ГОСТ 10060.0 и ГОСТ 28570. Если целью испытания является получение математической модели, то в качестве образца берут алюминиевый кубик, поставляемый в комплекте.

5.2.2 Определить начальный объем V₀ бетонных образцов и насытить их водой согласно пункту 4.11 ГОСТ 10060.0.

5.2.3 Проверить плавность хода направляющей шпильки сильфона до помещения образца в измерительную камеру. Для

этого достаточно несколько раз легко надавить вверх или оттянуть вниз за утолщение видимой части шпильки. При подклинивании следует нанести на шпильку небольшое количество смазки (литол, смазочное масло, силиконовая смазка) и проверить плавность движения сильфона.

5.2.4 Для повышения точности измерения и увеличения линейного хода сильфона, перед заливкой керосина в камеру, необходимо направляющую шпильку оттянуть вниз и закрепить её в этом положении, повернув фиксатор-флажок.

ВНИМАНИЕ! Закончив заправку измерительной камеры необходимо снять ограничение на вертикальное перемещение сильфона, вернув фиксатор-флажок в исходное положение. В противном случае, регистрация объемных деформаций образцов во время эксперимента будет происходить неправильно.

5.2.5 Открутив прижимной болт 3, снять крышку 2 и налить чистый керосин в измерительную камеру до уровня 5-7 мм.

5.2.6 С помощью крючка, поставляемого в комплекте, или обвязав тонкой проволокой, опустить образец в камеру и долить керосин до верхнего края стенок.

5.2.7 Закрыть крышку 2, предварительно убедившись, что большое резиновое кольцо плотно уложено в торцевой паз на корпусе. Вставить прижимное устройство (коромысло 4) в проушины боковых кронштейнов и закрутить прижимной болт 3 при помощи гаечного ключа до касания крышки с корпусом камеры.

5.2.8 Заливая в заправочный патрубок 7 керосин и, покачивая камеру, стравить воздух из камеры через контрольное отверстие на крышке. Закрутить пробку 6.

5.2.9 Заполнить заправочный патрубок керосином до края и закрутить пробку 8. Излишки керосина промокнуть тряпкой. Закрепить камеру на стойке стопорным язычком 10.

5.2.10 Повернуть фиксатор-флажок в исходное положение и надавить вверх на видимую часть направляющей шпильки сильфона. Если шпилька будет смещаться (это означает, что из системы не полностью удален воздух), то следует открыть пробку на заправочном патрубке и, повторив процедуры по п.п. 5.2.4 и 5.2.9, добиться полного удаления воздуха. После заправки камеру следует протереть.

ВАЖНО! Заправку измерительных камер керосином необходимо проводить тщательно, так как наличие воздуха искажает результаты испытаний!

5.2.11 При наличии дополнительных измерительных камер повторить для них процедуру заливки керосина, если они будут использоваться в испытании.

5.2.12 Подключить подготовленную измерительную камеру при помощи кабеля к соединительному блоку. Подключение одной камеры может производиться к любому из разъемов с маркировкой К1; К2; К3.

ВАЖНО! При таком подключении правильно выбрать активный канал при настройке параметров испытаний по п. 5.4.2.

РЕКОМЕНДУЕМ! При проведении испытаний камеру со стандартным образцом подключать к каналу К1.

5.2.13 Подключить соединительный блок к электронному блоку.

5.2.14 При наличии дополнительных измерительных камер каждую камеру подключить при помощи кабеля к соединительному блоку и выбрать активные каналы, соответствующие маркировке.

5.2.15 **ВАЖНО!** Войти в пункт главного меню «Градуировочные коэффициенты» и проверить установленное значение коэффициента, соответствующего подключенной камере (см. п. 3.5.7).

В более поздних версиях электронного блока комплекса значение градуировочного коэффициента считывается автоматически из памяти измерительной камеры при её подключении к электронному блоку.

5.2.16 Поместить измерительную камеру (камеры) в морозильную камеру, закрыть её. Перед включением морозильной камеры в сеть и активацией режима регистрации в электронном блоке, выдержать паузу в 30 минут, согласно ГОСТ 10060.3 (с изменением №1). Во время этой паузы, включив режим предварительного измерения, можно проверить правильность подключения камер и работоспособность датчиков по дрейфу показаний.

5.3 Использование образцов других размеров

Помимо бетонных образцов-кубиков с размерами 100×100×100 мм, ГОСТ 10060.3 (с изменением №1) разрешает испытывать образцы в виде цилиндров (кернов) с диаметром и высотой 70 мм.

Для реализации этой возможности, дополнительно, по заказу потребителя, поставляется алюминиевый стандартный образец, состоящий из двух частей: кубика с цилиндрической полостью и цилиндра, вставленного в эту полость.

Стандартный образец в сборе используется для получения математической модели или для проведения испытаний на морозостойкость дифференциальным методом.

При определении морозостойкости бетонных образцов в виде цилиндров, чтобы скомпенсировать избыточность заливаемого керосина, сначала в измерительную камеру помещают полый алюминиевый кубик, а затем в него вставляют бетонный керн. Процедура заполнения камеры керосином производится согласно п.п. 5.2.3 - 5.2.10.

Кроме того, три дополнительных вкладыша, которые приобретаются дополнительно для каждой камеры, позволяют испытывать бетонные кубики со стороной 70 мм. Ниже на рисунке 4 приведена схема расположения вкладышей внутри камеры.

При обработке результатов испытания бетонных кубиков с ребром 70 мм значение морозостойкости F, соответствующее вычисленному относительному изменению объема θ , берется из таблицы 1 как для цилиндра \emptyset 70×70 мм.

Рисунок 4 – Схема расположения вкладышей в измерительной камере

5.4 Получение математической модели

Прежде чем приступить к испытаниям на морозостойкость бетонных образцов необходимо заложить в комплекс кривую, характеризующую объемные деформации стандартного образца. Для этого необходимо произвести следующие действия.

5.4.1 Подготовить измерительную камеру со стандартным образцом, поместить её в морозильную камеру и подключить к электронному блоку, согласно п. 5.2. данного руководства по эксплуатации.

5.4.2 Войти в пункт главного меню «Параметры» и настроить параметры испытания:

- указать номер камеры, в которой находиться стандартный образец;

- выбрать активные каналы;

- установить длительность и период регистрации.

Ниже приведены рекомендуемые значения параметров для получения математической модели при работе с одной камерой.

5.4.3 В пункте главного меню «Градуировочные коэффициенты» установить значение градуировочного коэффициента, которое должно соответствовать подключенной камере.

5.4.4 Включить морозильную камеру в сеть и двойным нажатием кнопки (М) запустить процесс регистрации.

5.4.5 По завершении времени регистрации электронный блок автоматически обработает результаты измерений, сделает аппроксимацию кривой объемных деформаций и вычислит коэф-фициенты.

козф.модели	
Кн 1: а0=-1.084Е+00	
a1=+1.090E-03	
Nº1 a2=-5.379E-08	
a3=+9.904E-43	
"М"-график,"→"-парам	
"↓"-выбор канала	
"F"-выход	

Эти коэффициенты можно сохранить в пункт главного меню «Математическая модель» под нужной меткой М1, М2 или М3, нажав кнопку (1) и в дальнейшем использовать при вычислении объемных деформаций в испытаниях с бетонными образцами.

Кроме того, если сразу после испытания коэффициенты не были записаны в электронный блок как коэффициенты математической модели, то их значения также можно посмотреть в пункте главного меню «Архив».

5.4.6 При работе с двумя или тремя измерительными камерами, с одновременным испытанием двух или трех образцов бетона, рекомендуется использовать уточненную математическую модель, учитывающую влияние дополнительных камер на процесс охлаждения (увеличение массы и уменьшение скорости охлаждения).

Модель для этого случая получают при проведении испытания на морозостойкость дифференциальным методом, с одновременным замораживанием стандартного и бетонных образцов.

Ниже приведены рекомендуемые значения параметров для получения математической модели при работе с двумя измерительными камерами.

Параметры: Станд.образец Актив.каналы Длительн.уч:м Периодус Объем выборки	1 9 +2 6:09 5 4329
 [€→↑↓]изменить/	KYPCOP

5.4.7. Для получения стабильных результатов при проведении испытаний требуется соблюдение некоторых рекомендаций:

- использовать морозильную камеру промышленного образца с максимальной температурой охлаждения не выше минус 24 °C;

- размещать измерительные камеры по возможности в одном и том же месте морозильной камеры;

- для уменьшения влияния краевого эффекта при охлаждении необходимо ставить измерительные камеры на расстоянии от стенок, концентрируя их ближе к центру морозильной камеры; - получить серию кривых объемного деформирования стандартного образца (коэффициенты математической модели), соответствующих различным начальным температурам испытания;

- при выборе коэффициентов математической модели принимать во внимание начальную температуру, при которой была получена модель, допускается отличие до ± 2 °C.

5.5 Проведение испытаний

5.5.1 Подготовить бетонные образцы и измерительные камеры согласно пункту 5.2.

5.5.2 Подключить измерительные камеры к электронному блоку комплекса и поместить их в морозильную камеру.

5.5.3. Войти в пункт главного меню «Параметры» и задать параметры испытания.

а) Рекомендуемые установки при работе с одной камерой.

б) Рекомендуемые установки при работе с двумя камерами:
 – для случая определения морозостойкости двух бетонных образцов;

Параметры: Станд.образец Актив.каналы Длительн.,ч:м Период,с Объем выборки	M2 4+2 BNXX 5 4320
[+→↑↓]изменить/	курсор

– для случая прямых испытаний.

Параметры: Станд.образец Актив.каналы Длительн.уч:м Периодус Объем выборки	1 4+2 6:20 4320
[↔↑↓]изменить/	КУРСОР

Длительность испытания может быть уменьшена, если температура окончания охлаждения минус (18 ± 2) °С, достигается на морозильном оборудовании потребителя за более короткий срок. 5.5.4 Войти в пункт главного меню «Бетонный образец», установить вид испытуемого бетона (тяжелый, легкий или бетон дорожных и аэродромных покрытий) и геометрию образцов (кубик с ребром 70 и 100 мм, цилиндр Ø70×70 мм).

Более точные размеры образцов для корректировки результатов испытания можно будет выставить в программе связи (Приложение А) после эксперимента при составлении отчета.

5.5.5 В пункте главного меню «Градуировочные коэффициенты» установить значение градуировочного коэффициента, которое должно соответствовать подключенной камере.

5.5.6 Включить морозильную камеру в сеть и двойным нажатием кнопки (М) запустить процесс регистрации.

В процессе измерения можно следить за текущими данными, поступающими с датчиков, на экране электронного блока комплекса. Навигация в режиме измерения описана в пункте 3.6.

5.5.7 По окончании испытания электронный блок автоматически обработает результаты измерений, вычислит относительную объемную деформацию бетонного образца в каждом канале и определит марку бетона по морозостойкости.

Все данные можно сохранить в памяти комплекса для последующей передачи на компьютер, с целью более детального изучения, корректировки, составления отчета и распечатки.

5.5.8 Для повышения надежности результатов испытания рекомендуется обязательная компьютерная обработка данных, с целью исключения возможных погрешностей алгоритма вычисления электронного блока.

5.6 Завершение испытания

5.6.1 После окончания обработки результатов электронный блок выключить и отсоединить от кабеля.

5.6.2 Отключить морозильную камеру от питающей сети и достать измерительную камеру (камеры).

5.6.3 Открутить пробку и, наклонив камеру, слить часть керосина в емкость.

5.6.4 Открутить прижимной болт, снять крышку и при помощи крючка достать образец.

5.6.5 Слить остатки керосина и протереть камеру. Керосин можно использовать при следующих испытаниях.

5.7 Вывод результатов на компьютер

Электронный блок комплекса оснащен стандартным USBразъемом для связи с компьютером. Описание программы и работа с ней изложены в Приложении 1.

6 МЕТОДИКА ПОВЕРКИ

6.1 Поверка комплекса выполняется органами Государственной метрологической службы или другими уполномоченными на то органами и организациями, имеющими право поверки. При использовании в сферах и областях применения, не подлежащих государственному метрологическому контролю и надзору, допускается калибровка комплекса.

6.2 Межповерочный интервал составляет 2 года.

6.3 Операции и средства поверки

6.3.1 При проведении первичной и периодической поверки должны быть выполнены операции, указанные в таблице 3.

	-		
		Обязательность	
Наименование	Номер	проведения операции	
	пункта	при поверке	
операции	МΠ	первич-	периоди-
		ной	ческой
1 Внешний осмотр	6.5.1	Да	Да
2 Опробование	6.5.2	Да	Да
3 Определение основной			
абсолютной погрешности	652	Ла	Ла
измерения объемных де-	0.3.3	да	да
формаций			
4 Подтверждение соответ-	654	Лэ	Лэ
ствия ПО	0.3.4	да	да

Таблица 3 – Операции поверки

6.3.2 При проведении поверки должны применяться средства поверки, указанные в таблице 4.

Таблица 4 – Средства поверки

№ пункта	Наименование средства измерения, номер
методики	нормативно-технической документации, мет-
поверки	рологические и технические характеристики
6.5.3	Градуированная пипетка 2-1-2-5 ГОСТ 29228, цена деления 0,05 см ³

6.3.3 Все средства поверки должны быть поверены в установленном порядке.

Допускается применение других средств поверки, обеспечивающих выполнение измерений с требуемой точностью.

6.4 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

 (20 ± 5) °C; - температура окружающей среды

от 30 до 80 %; - относительная влажность воздуха

от 84 до 106 кПа;

- атмосферное давление - напряжение питания электронного блока $(3,7 \pm 0,5)$ B;

 (220 ± 22) B - напряжение сети питания

с частотой (50 ± 0,2) Гц;

6.5 Проведение поверки

6.5.1 Внешний осмотр

При проведении внешнего осмотра устанавливают соответствие поверяемого комплекса следующим требованиям:

- комплектность – согласно пункту 10.1 настоящего руководства по эксплуатации;

- сохранность пломб;

- наличие маркировки;

- отсутствие явных механических повреждений комплекса и его составных частей;

- правильное функционирование клавиатуры;

- все разъемы, клеммы и кабели не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый комплекс бракуется и подлежит ремонту.

6.5.2 Опробование

При проведении опробования необходимо проверить подключение измерительной камеры к электронному блоку комплекса в соответствие с каналами измерения.

1) Для проверки канала измерения №1, подключить измерительную камеру к электронному блоку штатным соединительным кабелем через разъём с маркировкой К1.

2) Включить электронный блок, войти в пункт главного меню «Параметры» и установить следующие значения параметров измерения:

Эталон – 1

Активные каналы – 1.

3) Из главного меню, нажав кнопку (М), войти в режим предварительного измерения. На индикаторе должна появиться информация о текущем положении датчика перемещения (объёма) и температуре корпуса измерительной камеры.

4) На нижнем кронштейне камеры соосно направляющей шпильке (сильфону) закрепить устройство линейного перемещения, микрометрический винт которого должен находиться в крайнем нижнем положении.

5) При помощи винтового механизма, двигая направляющую шпильку сильфона, изменить положение датчика перемещения (объема), и убедиться в том, что показания объема на экране электронного блока изменились.

6) При наличии в комплекте комплекса дополнительных измерительных камер провести процедуры 1-5 для проверки каналов измерения №1, №2 и №3 на комплектных камерах.

Комплекс считается выдержавшим испытания, если во время проверки каналов измерения на экране изменяются показания объемных деформаций и отсутствует сообщение об ошибке – «ОШИБКА ПОДКЛЮЧЕНИЯ».

6.5.3 Определение основной абсолютной погрешности измерения объемных деформаций проводят следующим образом:

Поместить в измерительную камеру стандартный образец и заполнить камеру рабочей жидкостью.

Герметично закрыть камеру крышкой, удалить воздух и на заливной патрубок навернуть через переходную втулку градуированную пипетку 2-1-2-5 по ГОСТ 29228 с ценой деления 0,05 см³.

На нижнем кронштейне камеры соосно направляющей шпильке (сильфону) закрепить устройство линейного перемещения, винт которого должен находиться в крайнем нижнем положении.

Подключить измерительную камеру к электронному блоку в соответствии с номером канала измерения.

Перевести электронный блок в режим предварительного измерения, нажав кнопку M.

Плавным вращением винта устройства линейного перемещения придать сильфону вертикальное перемещение до появления в градуированной пипетке некоторого объема рабочей жидкости и совмещения мениска рабочей жидкости с целым делением шкалы пипетки (исходная отметка - точка отсчета).

Нажав кнопку С, обнулить показания – начальная точка проверки.

Определить основную абсолютную погрешность в пяти точках диапазона изменения объема: 0,5 см³, 1,5 см³, 2,5 см³, 3,5 см³, 4,5 см³.

Градуированной пипеткой осуществить пяти ступенчатый контроль вытесняемого объема жидкости в каждой контрольной точке. Для этого сжать сильфон измерительной камеры с помощью устройства линейного перемещения пять раз с изменением объема на шкале пипетки на 0,5 см³, и далее четыре раза на 1,0 см³.

Зафиксировать по показаниям электронного блока величину объема в каждой из пяти точек контроля объема.

Плавным вращением винта на устройстве линейного перемещения вернуть сильфон в исходную точку отсчета и через 5 минут вновь зафиксировать по электронному блоку величину объема в пяти точках диапазона контролируемого объема.

Операцию контроля величины объема в прописанном диапазоне провести три раза.

Вычислить среднее арифметическое значение величины объема в каждой точке контроля по формуле:

$$V_i = \frac{1}{3} \sum_{1}^{3} V$$
 (5)

и вычислить значение абсолютной погрешности в каждой точке контроля по следующей формуле:

$$\Delta_i = V_i - V_{i \pi} \tag{6}$$

где V_i – показания электронного блока в точке контроля, мл (см³);

V_{і п} — значение объема в точках контроля: 0,5 ; 1,5 ; 2,5 ; 3,5 ; 4,5 мл (см³).

Основная абсолютная погрешность комплекса определяется как среднее арифметическое значение абсолютных погрешностей Δ_i в каждой точке контроля:

$$\Delta = \frac{1}{5} \sum_{1}^{5} \Delta_i , \qquad (7)$$

и не должна превышать значения, указанного в п.2.1.

При наличии в комплекте комплекса дополнительных измерительных камер повторить процедуру определения основной абсолютной погрешности для каждой камеры комплекса.

6.5.4 Подтверждение соответствия программного обеспечения

Проверку соответствия программного обеспечения (далее – ПО) проводить следующим образом.

Включить электронный блок комплекса. Находясь в главном меню, кнопкой «F» войти в меню «О приборе». На дисплее появится краткая информация о предприятии-изготовителе и идентификационный номер версии программного обеспечения — 12.07.2012.

Нажать кнопку «М». На дисплее появится информация о цифровом идентификаторе программного обеспечения (контрольной сумме исполняемого кода) - 593E, подтверждающая соответствие программного обеспечения.

6.6 Оформление результатов поверки

6.6.1 Результаты поверки оформляют выдачей свидетельства установленной формы.

6.6.2 Комплексы, не удовлетворяющие требованиям настоящей методики, к выпуску и применению не допускают. На них выдаётся извещение о непригодности с указанием причин.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И ЭКСПЛУАТАЦИЯ

7.1 Профилактический уход и контрольные проверки комплекса производятся лицами, непосредственно эксплуатирующими комплекс.

7.2 Комплекс необходимо содержать в чистоте, периодически протирать его от пыли сухой и чистой фланелью, оберегать от ударов.

7.3 Утилизация использованного керосина должна производиться в соответствии с требованиями по утилизации горючесмазочных материалов.

7.4 При обслуживании запрещается вскрывать электронный блок и снимать кожух измерительной камеры. В противном случае прекращается действие гарантийных обязательств.

7.5 При первом включении электронного блока, а также при появлении на дисплее информации о разряде батареи или при отсутствии реакции блока на включение, необходимо зарядить аккумулятор. Для этого подключить электронный блок к зарядному устройству с помощью кабеля USB. Подключить зарядное устройство к сети напряжением 220 В либо подключить кабелем USB к работающему компьютеру.

7.6 При проведении длительных испытаний питание комплекса рекомендуется осуществлять от зарядного устройства.

7.7 Если в процессе работы электронный блок перестает реагировать на нажатие кнопок, необходимо нажать кнопку выключения блока. Блок должен выключиться не более, чем через 10 секунд.

7.8 При всех видах неисправностей необходимо с подробным описанием особенностей их проявления обратиться к изготовителю за консультацией. Отправка комплекса в гарантийный ремонт должна производиться с актом о претензиях к его работе.

7.9 Комплекс является сложным техническим изделием и не подлежит самостоятельному ремонту. При всех видах неисправностей необходимо с подробным описанием особенностей их проявления обратиться к изготовителю за консультацией.

Отправка прибора в гарантийный ремонт должна производиться с актом о претензиях к его работе.

8 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

8.1 Маркировка комплекса содержит:

- товарный знак предприятия - изготовителя;

- знак утверждения типа (только электронный блок);

- обозначение компонента комплекса БЕТОН-ФРОСТ;

- серийный номер компонента комплекса (кроме соединительного блока);

- дату выпуска (только электронный блок);

- значение градуировочного коэффициента Krp (только измерительная камера).

8.2 На комплекс, прошедший приемо-сдаточные испытания, ставится пломба. Пломба наносится на винт крепления корпуса в батарейном отсеке электронного блока.

9 ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

9.1 Транспортирование комплексов должно проводиться в упакованном виде любым крытым видом транспорта (авиатранспортом - в отапливаемых герметизированных отсеках) в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

9.2 Расстановка и крепление ящиков с комплексами в транспортных средствах должны исключать возможность их смещения и ударов друг о друга.

9.3 Погрузочно-разгрузочные работы должны осуществляться в соответствии с транспортной маркировкой по ГОСТ 14192.

9.4 Температурные условия транспортирования комплекса от минус 25 °C до плюс 50 °C.

9.5 Упакованные комплексы должны храниться в условиях 1 для группы Л ГОСТ 15150.

10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

10.1 Предприятие-изготовитель гарантирует соответствие выпускаемых комплексов требованиям технических условий. Гарантийный срок – 18 месяца с момента продажи комплекса.

10.2 Предприятие-изготовитель обязуется в течение гарантийного срока безвозмездно производить ремонт компонентов комплекса, если они выйдут из строя.

10.3 Гарантийное обслуживание осуществляется в месте нахождения предприятия-изготовителя. Срок гарантии на изделие увеличивается на время его нахождения в ремонте.

Комплекс предъявляется в гарантийный ремонт в следующей комплектации: блок электронный в чехле, блок соединительный, камера измерительная, образец стандартный 100×100×100 мм, кабель соединительный, руководство по эксплуатации, кофр или сумка, дополнительная измерительная камера (при наличии), транспортная упаковка, обеспечивающая сохранность и надлежащую транспортировку оборудования.

Внимание! Оборудование для гарантийного ремонта должно быть предоставлено в чистом виде.

10.4 Срок проведения ремонтных работ - 30 рабочих дней с момента получения компонентов комплекса предприятием-изго-товителем.

10.5 Срок замены комплекса - 30 рабочих дней с момента получения комплекса предприятием-изготовителем. Замена производится при наличии существенного недостатка (стоимость устранения недостатков равна или превышает 70 % от стоимости товара), а также при повторном проявлении дефекта после его устранения.

10.6 Недополученная в связи с неисправностью прибыль, транспортные расходы, а также косвенные расходы и убытки не подлежат возмещению.

10.7 Гарантия не распространяется на:

- литиевый аккумулятор;

- быстроизнашивающиеся запчасти и комплектующие (соединительные кабели, разъёмы и т.п.);

- расходные материалы (карты памяти и т.п.).

10.8 Гарантийные обязательства теряют силу, если:

- нарушены заводские пломбы;

- компоненты комплекса подвергались сильным механическим, тепловым или атмосферным воздействиям;

- изделия вышли из строя из-за попадания внутрь посторонних предметов, жидкостей, агрессивных сред;

- на изделиях удален, стерт, не читается или изменен серийный номер.

10.9 Гарантийный ремонт и организацию периодической поверки осуществляет предприятие-изготовитель ООО НПП «Интерприбор»: 454080, Челябинск, а/я 12771, бесплатные звонки по России 8-800-775-05-50, тел. (351) 729-88-85.

11 УТИЛИЗАЦИЯ

Специальных мер для утилизации материалов и комплектующих элементов, входящих в состав компонентов комплекса, кроме аккумуляторов, не требуется, так как отсутствуют вещества, представляющие опасность для жизни, здоровья людей и окружающей среды после окончания срока службы. Аккумуляторы утилизируются в установленном порядке.

12 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем РЭ использованы ссылки на следующие стандарты:

ГОСТ 12.2.007.0-75 Изделия электротехнические. Общие требования безопасности.

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования

ГОСТ 10060.3-95 Бетоны. Дилатометрический метод ускоренного определения морозостойкости (с изменением №1).

ГОСТ 14192-96 Маркировка грузов.

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

ГОСТ 28570-2019 Бетоны. Методы определения прочности по образцам, отобранным из конструкций.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

13 КОМПЛЕКТНОСТЬ

13.1 Основная комплектность

Блок электронный шт.	1
Блок соединительный, шт.	1
Камера измерительная, шт.	1
Образец стандартный 100×100×100 мм, шт	1
Кабель соединительный, шт	1
Крючок, шт.	1
Шприц специальный 20 мл, шт.	1
Зарядное устройство USB (1А), шт.	1
Руководство по эксплуатации, шт.	1
Программа связи с ПК (USB-флеш), шт.	1
Кабель USB для связи с компьютером, шт.	1
Чехол, шт.	1
Кофр, шт.	1*
Сумка, шт.	1**

13.2 Дополнительные комплектующие*

Измерительная камера, шт.	
Кабель соединительный, шт.	
Стандартный образец с керном Ø70×70мм, шт.	
Вкладыши для образца 70×70×70мм, шт	
Образец стандартный 100×100×100 мм, шт.	

^{* -} по заказу

^{** -} отсутствует при заказе измерителя в кофре

ПРИЛОЖЕНИЕ А Программа связи комплекса БЕТОН-ФРОСТ с компьютером

Введение

Программа предназначена для переноса результатов измерений в компьютер, их сохранения, просмотра, анализа и корректировки, а также составления и печати отчета по выбранным результатам в виде таблиц и графиков. Связь электронного блока комплекса с компьютером осуществляется по стандартному USB-интерфейсу.

Минимально необходимые требования к компьютеру

Операционная система Windows XP/ 7/ 8/ 10 (32- или 64разрядная).

Наличие USB-интерфейса.

Инсталляция программы

Для инсталляции программы на компьютер нужно вставить USB-флеш-накопитель «Интерприбор» в компьютер, найти папку «Программа связи с ПК», открыть и запустить программу bfrost_1.exe. Должно появиться диалоговое окно приглашения в программу инсталляции.

После нажатия на кнопки «Далее» появится окно выбора пути установки программы – по умолчанию C:\ Program Files\ Interpribor\ BETON-Frost-1.0.

🚏 Установка — CONCRETE-Frost-1.0	<u>_ </u>
Выбор папки установки В какую папку Вы хотите установить CONCRETE-Frost-1.0?	Ð
Программа установит CONCRETE-Frost-1.0 в следующую папку.	
Нажмите «Далее», чтобы продолжить. Если Вы хотите выбрать другую папку, нажмите «Обзор».	_
C:\Program Files\Interpribor\CONCRETE-Frost-1.0	
Требуется как минимум 5,5 Мб свободного дискового пространства.	
< <u>Н</u> азад Далее > Отм	1ена

При желании пользователь может выбрать любой другой путь, нажав на кнопку «Обзор» и воспользовавшись стандартным диалоговым окном выбора каталога.

Для продолжения установки необходимо еще раз нажать кнопку «Далее». Появится окно выбора размещения программы в меню «Пуск\ Программы» ОС Windows.

🖶 Установка — CONCRETE-Frost-1.0	_ 🗆 🗙
Выберите папку в меню «Пуск» Где программа установки должна создать ярлыки?	
Программа создаст ярлыки в следующей папке меню «Пуск». Нажмите «Далее», чтобы продолжить. Если Вы хотите выбрать другую п	апкч.
нажмите «Обзор».	
Интерприбор 06	30p
Russian	
< Назад Далее >	Отмена

По умолчанию название программы «БЕТОН-ФРОСТ-1.0» будет размещено в папке «Интерприбор», но при желании пользователь может выбрать любую из имеющихся на компьютере или создать новую.

После следующего нажатия кнопки «Далее» появится окно для окончательной проверки введенных данных.

🚰 Установка — CONCRETE-Frost-1.0	
Всё готово к установке Программа установки готова начать установку CONCRETE-Frost-1.0 на Ваш компьютер.	
Нажмите «Установить», чтобы продолжить, или «Назад», если Вы хотите просмотреть или изменить опции установки.	
Папка установки: C:\Program Files\Interpribor\CONCRETE-Frost-1.0	A
Папка в меню «Пуск»: Интерприбор	
Hussian	тмена

В этом окне, как и в любом из предыдущих, можно нажать кнопку «Назад» для возвращения к предыдущему диалоговому окну и ввода других данных.

После нажатия на кнопку «Установить» в окне проверки введенных данных начнется копирование файлов.

По окончании установки появится окно с сообщением об успешном окончании инсталляции.

Для завершения программы установки нужно нажать кнопку «Завершить». Установка окончена.

Порядок работы с программой

Подключить электронный блок к одному из USB-портов компьютера при помощи кабеля связи, входящего в комплект поставки.

Включить прибор.

Внимание! ВАЖНО!

При первом подключении прибора к компьютеру операционная система найдёт новое устройство — BETON-FROST-1.0, для которого необходимо установить драйвер USB. На мониторе появится «Мастер нового оборудования». Выберите пункт «Установка из указанного места» и нажмите кнопку «Далее».

В следующем окне отметьте действие: «Выполнить поиск наиболее подходящего драйвера в указанных местах» и выберете пункт «Включить следующее место поиска». В качестве источника для поиска драйвера, воспользовавшись кнопкой «Обзор», укажите директорию с драйвером USB, который находится в папке, вместе с установленной основной программой связи БЕТОН-ФРОСТ-1.0 (по умолчанию C:\ Program Files\ Interpribor\ BETON-Frost-1.0.). Нажмите кнопку «Далее».

Частер нового оборудования		
Задайте параметры поиска и установки.		
Выполнить поиск наиболее подходящего драйвера в указанных местах.		
Используйте флажки для сужения или расширения области поиска, включающей по умолчанию локальные папки и съемные носители. Будет установлен наиболее подходящий драйвер.		
🔲 Поиск на сменных носителях (дискетах, компакт-дисках)		
🔽 Включить следующее место поиска:		
D:\Program Files\Interpribor\CONCRETE-Frost-1.0\d 💌 063op		
Не выполнять поиск. Я сам выберу нужный драйвер.		
Этот переключатель применяется для выбора драйвера устройства из списка. Windows не может гарантировать, что выбранный вами драйвер будет наиболее подходящим для имеющегося оборудования.		
< Назад Далее > Отмена		

После этого операционная система найдёт драйвер и установит его. В завершение процедуры установки драйвера нажмите кнопку «Готово».

Проблемы при установке драйвера

В современных операционных системах (Windows 8 и более поздние версии) по умолчанию могут быть ограничены права пользователя на установку драйвера, на запись файлов драйвера в системные папки Windows.

Для успешной установки драйвера необходимо, чтобы компьютер был загружен с использованием учетной записи администратора. Если установка драйвера заканчивается сообщением об ошибке, а в диспетчере устройств, при наведении курсора мыши на строку «Beton-frost-1.0», появляется сообщение о невозможности проверки цифровой подписи драйвера, нужно отключить <u>обязательную проверку цифровой подписи</u> драйвера.

Для этого:

• Нажатием комбинации Win+I открыть окно параметров. Затем, удерживая Shift, нажать мышью «Выключение» и «Перезагрузка»

• При перезагрузке появляется меню, в котором нужно выбрать пункт «Диагностика»

• В меню «Диагностика» выбрать пункт «Дополнительные параметры»

Диагностика			
2	Восстановить ваши файлы останутся на месте		
<u>0</u>	Вернуть в исходное состояние ваши файлы будут удалены		
šΞ	Дополнительные параметры		

• В меню «Дополнительные параметры» выбрать пункт «Параметры загрузки»

• В окне «Параметры загрузки» нажать кнопку «Перезагру-

ЗИТЬ≫

• После перезагрузки должно появиться меню, в котором нужно выбрать пункт «Отключить обязательную проверку подписи драйверов». На приведенном рисунке для этого необходимо нажать клавишу F7.

Параметры загрузки
Для выбора из следующих параметров нажмите соответствующую клавишу:
Используйте клавиши с цифрами или F1–F9.
1) Включить отладку
2) Включить ведение журнала загрузки
3) Включить видеорежим с низким разрешением
4) Включить безопасный режим
5) Включить безопасный режим с загрузкой сетевых драйверов
6) Включить безопасный режим с поддержкой командной строки
7) Отключить обязательную проверку подписи драйверов
8) Отключить ранний запуск антивредоносной защиты
9) Отключить автоматический перезапуск после сбоя

По окончании перезагрузки можно установить драйвер одним из описанных способов.

Запустить программу «БЕТОН-ФРОСТ-1.0» (Пуск\Программы\Интерприбор\БЕТОН-ФРОСТ-1.0). На мониторе появится окно программы с системой меню в верхней строке.

🔆 БЕТОН-Frost-1.0 - [1.FDB]	
Файл Вид Связь Помощь	
🗋 📁 🔚 🙇 🗠 🗙 🖷 🤯 🗢 🔚 🖬 🔽 V(t) Τ(t) ΔΤ(t) V(T)	ν(ΔΤ) Δν(t)

Создание нового и открытие существующего проектов

Чтобы считать данные с прибора, сделать анализ и произвести распечатку на принтере, необходимо первоначально создать новый проект! Для этого нужно нажать иконку или воспользоваться командой системы меню «Файл \ Новый», и задать имя проекта.

ВНИМАНИЕ! При работе с программой в среде Windows 8/10 файлы проектов необходимо сохранять в папку, отличную от папки с установленной программой:

C:\\Program Files\Interpribor\Prognoz+\Проекты. Например, в:

Х:\\Мои документы\Интерприбор\Прогноз\Проекты,

где Х – имя рабочего раздела или диска.

Если проект, с которым вы собираетесь работать, был создан ранее, то для его открытия следует нажать иконку или воспользоваться командой системы меню «Файл \ Открыть», и указать путь и имя существующего проекта.

После создание нового или открытия существующего проекта станут доступными следующие иконки:

— сохранить изменения, внесенные в проект;

📠 – закрыть текущий проект;

 – отменить все изменения до последнего сохранения проекта;

🗙 – удалить все записи из проекта;

🔳 – считать данные из прибора;

💹 – сформировать отчет для печати;

🕶 – экспортировать данные в текстовый файл;

□ – просмотреть таблицу морозостойкостей бетонов ГОСТ 10060.3-95 (с изменением №1);

сделать снимок с экрана электронного блока;

v(t) – вывести в окне графиков зависимость изменения объема от времени V(t);

т(t) – вывести в окне графиков зависимость изменения температуры корпуса камеры от времени T(t); △т(t) – вывести в окне графиков зависимость изменения приращения температуры корпуса камеры от времени ∆T(t);

чт – вывести в окне графиков зависимость изменения объема от температуры корпуса камеры V(T);

______ – вывести в окне графиков кривую разности объемных деформаций бетонного и стандартного образца ∆V(t);

Считывание информации с прибора

- запустить программу связи;

- включить питание прибора;

- подключить прибор к компьютеру с помощью USB - кабеля;

- нажать иконку 🔳 (или через меню Файл / Считать с прибора);

- для сохранения полученных данных нажать копку 💷 (или через меню Файл / Сохранить).

При успешном считывании программа сравнит полученные данные с уже имеющимися в проекте. В проект будут добавлены только те данные, которых ранее не было, а совпадающие данные будут проигнорированы.

В строке состояния, находящейся в самом низу окна проекта, отображаются подсказки о назначении каждой иконки.

Работа с данными

После считывания из прибора результаты измерений будут размещены в закладке «Данные», которая разбита на 5 основных полей.

Для более удобного восприятия графической информации программа позволяет назначить цвета графиков для каждого канала измерения и эталонного образца (команда системы меню «Вид \ Цвета графиков»).

Поле 1 – список измерений текущего проекта, которые можно выбирать для просмотра.

Поле 2 – список параметров, при которых проводилось выбранное измерение. Поле 3 – в этом поле выводятся в виде текста результаты обработки данных просматриваемого измерения, разделенные по каналам.

Поле 4 – окно графического представления данных эксперимента. Позволяет просматривать каждый канал по отдельности.

Поле 5 – поле для внесения текстовых комментариев, соответствующих текущему измерению.

В нижней части главного окна программы находится «линейка» графического представления результатов текущего испытания на морозостойкость. Цвета полосок соответствуют назначенным цветам каналов измерений, белая полоска соответствует среднему значению полученной морозостойкости.

Корректировка результатов обработки

Программа связи предусматривает внесение дополнительных корректив при анализе данных измерений (изменение общих параметров испытания, индивидуальных характеристик испытуемых бетонных образцов, работа со стандартной кривой в графическом режиме обработки результатов измерения).

★ 6ETOH-Frost-1.0 - [1.FDB]		
Файл Вид Связь	Помощь	
🗋 📁 🔚 🔯 🖙 🗙 🖷 🧊 🗢 🔚 🔜 🛛 V(t) Τ(t) ΔΤ(t) V(T) V(ΔΤ) ΔV(t)		
Описание Данные		
Дата Время	a Nº	🔺 Канал 1 Канал 2 👘 🛧 🕈 🔽 Эталонный образец
08.12.2006 12:31:	22 5	
11.12.2006 11:42:	38 6	
	N1 11 0175 00 1 11	
Эталон	MT [-1,017E+00, 1,17	5,50
Активные каналы	1+2	500
Длительность, ч:м	5:15 E	
Период, с	4,50	
вид, геометрия	бетон тяжёлый, кубик 100 мм 4,00	
Канал 1	Канал 2	
∆V = 4,29E+00 cm ³	$\Delta V = 3,48E+00 \text{ cm}^3$	Параметры
⊖ = 4,29E-03	Θ = 3,48E-03	Математическая модель
F = 25	F = 75	0 1017E+00 1 176E-03 0 5819E-08 0 1098E-12
<Θ> = 3,88E-03	<⊝> = 3,88E-03	
<f> = 25</f>	<f> = 25</f>	
Vo = 1000,0 cm ³	Vo = 1000,0 cm ³	Вид бетон тяжёлый 💌 Геометрия кубик 100 мм 💌
100,0× 100,0× 100,0	100,0× 100,0× 100,0	
Мисх = 1840,0 г	Мисх = 1861,0 г	Применить Отмена
Мнас = 2068,0 г	Мнас = 2086,0 г	
3 месяца	3 месяца	0:30 1:00 2:30 3:00 3:30 4:00 4:30 5:00
► ◄	▶ ▶	– «/ Время, ч:м
F I 25 I Θx10 ³ 3,80	35 I 50 75 3,60 3, 5 0	l 100 l 150 l 200 l 300 l 400 l 500 l 600 l 800 l 1000 l 2,40 1,70 1,00 0,65 0,33 0,20 0,18 0,08 0,05

При нажатии левой кнопки мышки на Поле 2 появится окно для редактирования общих параметров испытания (коэффициенты математической модели, вид и геометрия бетонных образцов). Для подтверждения внесенных изменений следует нажать кнопку «Применить» или «Отмена» – для выхода из окна редактирования без сохранения изменений.

При нажатии левой кнопки мышки на одну из колонок Поля 3, соответствующую каналу измерения, появится окно для внесения и изменения индивидуальных характеристик испытуемого бетонного образца (точные размеры, масса сухого и водонасыщенного образца, возраст). Для подтверждения внесенных изменений следует нажать кнопку «Применить» или «Отмена» – для выхода из окна редактирования без сохранения изменений.

🕸 6ETOH-Frost-1.0 - [1.FDB]				
Файл Вид Связь	Файл Вид Связь Помощь			
🗋 📁 📙 🚺	🗋 📁 🔚 🗟 🗠 🗙 💭 🗐 🗐 🗢 📋 🔛 V(t) Τ(t) ΔΤ(t) V(T) V(ΔΤ) ΔV(t)			
Описание Данные				
Дата Время	Дата Время № 🔺 Канал 1 Канал 2 🏷 🛧 🗸 Уталонный образец			
08.12.2006 12:31:	22 5			
11.12.2006 11:42:	38 6	5 00 B		
Эталон	M1 [-1,017E+00, 1,17	Канал 1		
Активные каналы	1+2	Геометрические размеры. мм		
Длительность, ч:м	5:15			
Период, с	5	x 100,0 y 100,0 z 100,0		
Вид, геометрия	бетон лёгкий, кубик 11			
Канал 1	Канал 2	Вес исходный, г		
∆V = 4,29E+00 cm ³	$\Delta V = 3,48E+00 \text{ cm}^3$			
Θ = 4,29E-03	Θ = 3,48E-03	Вес насыщенный, г		
F = 50	F = 75			
<Θ> = 3,88E-03	<0> = 3,88E-03	Возраст Змесяца		
<f> = 75</f>	<f> = 75</f>			
Vo = 1000,0 cm ³	$Vo = 1000,0 \text{ cm}^3$	Применить		
100,0×100,0×100,0	100,0× 100,0× 100,0			
Мисх = 1840,0 г	Мисх = 1861,0 г	0,50		
Мнас = 2068,0 г	Мнас = 2086,0 г			
3 месяца	3 месяца	0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00		
Время, ч:м				
F I 25 I Ox10 ³ 4,75	F I 25 I 35 I 60 I 75 I 100 I 150 I 200 I 300 I 400 I 500 I 600 I 800 I 1000 I ⊖x10 ³ 4,75 4,50 4,00 3,30 2,30 2,00			

Поле 4 имеет дополнительные управляющие кнопки, для изменения вида графиков процессов. При использовании этих кнопок результаты обработки автоматически пересчитываются и выводятся в Поле 3.

Масштаб окна графиков автоматически выбирается таким, чтобы был полностью виден весь просматриваемый процесс регистрации. Если необходимо рассмотреть какой-либо участок графика, нужный диапазон необходимо выделить левой кнопкой мыши (с левого верхнего угла в правый нижний угол).

После отпускания кнопки график автоматически перестроится, удалив лишние данные и увеличив масштаб оставшейся части во все окно.

При выборе участка графика левой кнопкой мыши с нижнего правого угла в верхний левый угол произойдет автоматическое уменьшение масштаба до полного появления графика.

Цвета графиков, соответствующие каждому каналу измерения, можно изменять, воспользовавшись командой системы меню «Вид \ Цвета графиков».

Создание отчета

При нажатии иконки создания отчета программой будет предложено выбрать нужные результаты измерений для распечатки, после чего появится режим предварительного просмотра, где будет показана таблица результатов и графики кривых разности объемных деформаций бетонного и стандартного образцов.

🕸 БЕТОН-Frost-1.0 - [6.FDB]				
Файл Вид Связь	Помощь			
2 📁 🖬 🚺	🗋 📁 🔚 🔯 🗠 🗙 🕘 🌌 🔽 Υ(t) Τ(t) ΔΤ(t) V(T) V(ΔΤ) ΔV(t)			
Описание Данные]			
Дата Врем:	я №	Канал 1 Канал 2 🏾 🏫 🛧 🛡 Эталонный образец		
17.08.2006 11:53 ▶ 17.08.2006 11:53	16 <u>4</u> 36 5			
		4,00		
Эталон	M1 [-1,182 Выбор типа	отчёта		
Активные каналы	2			
Длительность, ч:м	4:00 💿 Включи	ть в отчёт только текущую запись		
Период, с	10 C Br moure			
Вид, геометрия	бетон тяжё			
Канал 1	Канал 2	Применить Отмена		
	∆V = 1,075 L roo cm			
	Θ = 1,075E-03	0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00		
	F = 150	Время, ч:м		
	<Θ> = 1,075E-03	Комментарий:		
	<f> = 150</f>			
	Vo = 1000,0 cm ³			
	100,0x 100,0x 100,0			
′ H4 − ►				
		11		

Редакция 2023 12 13